A Critical Investigation of the Use of a Mandrel Peel Method for the Determination of Adhesive Fracture Toughness of Metal-pol

نویسندگان

  • L F Kawashita
  • A J Kinloch
  • D R Moore
  • J G Williams
چکیده

The application of peel tests for the measurement of adhesive fracture toughness of metal-polymer laminates is reviewed and the merits of a mandrel peel method are highlighted. The mandrel method enables a direct experimental determination of both adhesive fracture toughness (GA) and the plastic bending energy (GP) during peel, whilst other approaches require a complex calculation for GP. In this method, the peel arm is bent around a circular roller in order to develop a peel crack and an alignment load attempts to ensure that the peel arm conforms to the roller. The conditions for peel arm conformance are thoroughly investigated and the theoretical basis for conformation are established. Experimental investigations involve the study of the roller size (radii in the range 5 mm to 20 mm are used), the peel arm thickness (varied from 0.635 mm to 2.0 mm) and the magnitude of the alignment load. In addition, the plane of fracture is studied since fractures can vary from cohesive to interfacial and this has a profound influence on the value of GA and on interpretation of results. A test protocol for conducting mandrel peel is developed such that the roller size for peel arm conformance can be established from preliminary fixed arm peel tests. The work is conducted on two epoxy/aluminium alloy laminates suitable for aerospace applications. Comparative results of adhesive fracture toughness from mandrel peel and multi-angle fixed arm peel are made with cohesive fracture toughness from a tapered double cantilever beam test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Investigation of Rock Dynamic Fracture

Rapid development of engineering activities expands through a variety of rock engineering processes such as drilling, blasting, mining and mineral processing. These activities require rock dynamic fracture mechanics method to characterize the rock behavior. Dynamic fracture toughness is an important parameter for the analysis of engineering structures under dynamic loading. Several experimental...

متن کامل

Study of Variation of the J-integral and the Fracture Toughness in Blunt V-notches under Mode I Loading

Fracture assessment of U- and V-notches is important in mechanical engineering. One can use the J-integral as fracture parameter in order to predict the critical fracture load in notches. The critical value of the J-integral in cracks is a function of the material properties. In notches, however, the material properties as well as the notch dimensions affect this critical value (named fracture ...

متن کامل

Fracture Toughness سطح اتصال رزین کامپوزیتی و سرامیک

Statement of Problem: In a previous study it was reported that a durable resin-ceramic tensile bond could be obtained by an appropriate silane application without the need for HF acid etching the ceramic surface. Evaluation of the appropriate application of silane by other test methods seems to be necessary. Purpose: The purpose of this study was to compare the interfacial fracture toughness of...

متن کامل

Study on Iraqi bauxite ceramic reinforced Aluminum metal matrix composite synthesized by stir casting

For the past decades researchers are showing immense interest to investigate the natural advantage of preparation of composites from minerals such as bauxite particles, and proved their effectiveness as cost effective reinforcing agents in fabrication of high performance composites. This study, is a new attempt in using the Iraqi natural bauxite powder with different proportions (2wt%, 4wt%, an...

متن کامل

Numerical Determination of Delamination Onset in Laminated Symmetric DCB Specimen

In this study, a novel numerical method is proposed for determination of mode-I interlaminar fracture toughness, GIc, in multi-directional (MD) double cantilever beam (DCB) specimens using fracture properties of unidirectional DCB specimens. Two factors, β and Dc are defined to minimize the undesirable effects on strain energy release rate. β describes the difference between maximum and average...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014